منتديات البهجة لفرحة الجزائريين
عزيزي الزائر / عزيزتي الزائرة يرجي التكرم بتسجيل الدخول اذا كنت عضو معنا أوترغب في الانضمام الي اسرة المنتدي سنتشرف بتسجيلك شكرا ادارة منتديات البهجة لكل الجزائريين
درس الدوال الأصلية Vwt07ehbg3ze
منتديات البهجة لفرحة الجزائريين
عزيزي الزائر / عزيزتي الزائرة يرجي التكرم بتسجيل الدخول اذا كنت عضو معنا أوترغب في الانضمام الي اسرة المنتدي سنتشرف بتسجيلك شكرا ادارة منتديات البهجة لكل الجزائريين
درس الدوال الأصلية Vwt07ehbg3ze
منتديات البهجة لفرحة الجزائريين
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.



 
الرئيسيةأحدث الصوردخولالتسجيل

 

 درس الدوال الأصلية

اذهب الى الأسفل 
كاتب الموضوعرسالة
تائبة لله
نائب المدير العام
نائب المدير العام
تائبة لله


عدد المساهمات : 923
تاريخ الميلاد : 05/08/1992
تاريخ التسجيل : 26/03/2010

درس الدوال الأصلية Empty
مُساهمةموضوع: درس الدوال الأصلية   درس الدوال الأصلية I_icon_minitimeالسبت 22 يناير 2011 - 21:08

تمهيد
نعتبر الدالة التالفية f المعرفة كما يلى : f(x)=3x+2 ليكن D
المستقيم الممثل للدالة f فى المستوى المنسوب الى معلم متعامد ومتجانس. A
و B نقطتان من D لتكن 'A', B مسقطهما على محور الفواصل وفق محور التراتيب .

نفرض ان A و B فواصلهما على الترتيب 2 و 4 الرباعى 'ABA'B شبه منحرف قائم مساحته هى
S== (AA'+BB')xA'B'/2 ومنه S = (8+14) x 2/2 اى S= 22
نفرض الان ان A و B فواصلهما على الترتيب x 1 و x 2 مع , x 1<x 2 , f(x 1)> 0 f(x 2)>0 الرباعى
'ABA'B شبه منحرف قائم مساحته هى S== (AA'+BB')xA'B'/2 بما ان النقطتين A,B تنتميان
الى المستقيم D ترتيبهما , f(x 1) = 3x 1+2 , f(x 2) = 3x 2+2 .
لدينا اذا AA' = f(x 1) , BB '=f (x 2) , A'B' = x 2-x 1 نستنتج :
S== (f(x 1) + f(x 2)) x( x 2-x 1 ) / 2 ومنه S== (3 x 1+2 + 3 x 2+2 ) x( x 2-x 1 ) / 2
ومنه S== (3 x 1+2 + 3 x 2+2 ) x( x 2-x 1 ) / 2
ومنه S== (3 x 1+2 + 3 x 2+2 ) x( x 2-x 1 ) / 2
بعد النشر و الترتيب نجد : ( S== 3 /2x 2² +2 x 2 - ( 3 /2x 1² + 2 x 1
اذا اعتبرنا الدالة g المعرفة على R كما يلى : g(x) = 3/2 x² + 2x يمكن ان نكتب
( S== g(x 2)-g( x 1
نلاحظ انالدالة g قابلة للاشتقاق على R و f(x) = g ' (x) = 3x + 2 اذا الدالة g هى دالة مشتقتها f
نقول ان الدالة g هى دالة اصلية للدالة f .
تعريف
f دالة معرفة على مجال I ,نسمى دالة اصلية للدالة f كل دالة F معرفة وقابلة للاشتقاق على I ,و التى
مشتقتها هى f.
المثال :
الدالة f المعرفة على R ب : f(x)=2x لها دالة اصلية F معرفة على R ب : F(x)=x² لان F'=f
لاحظ انه يمكن اخذ الدالة Fعلى الشكل : F(x)=x²+2 او F(x)=x²-1 او بشكل عام F(x)=x²+ c
حيث c عدد حقيقى , الدالة الاصلية ليست وحيدة .
تمرين 1
f دالة معرفة على R . اوجد فى كل الحالات التالية الدالة الاصلية للدالة f
a) f(x) = 3 , b) f(x) = -2x , c) f(x) = -5x²

d) f(x) = x²-x+2 , e) f(x)=2x 3 , f) f(x) = (x-2) / 3
الخواص
اذا كانت F 0 دالة اصلية للدالة f على المجال I فان مجموعة الدوال الاصلية للدالة f هى F=F 0+c c عدد حقيقى .
f دالة تقبل دوال اصلية على مجال I , ليكن x 0عنصر من I و y 0عنصر من R توجد دالة اصلية وحيدة F بحيث
F(x 0)=y 0 .
لاحظ : كل دالة مستمرة على مجال تقبل دوال اصلية على هذا المجال .
تمرين2
f دالة معرفة على R حيث ( f(x) = cos(x .عين الدالة الأصلية للدالة f التي تأخذ القيمة 0 عند 1
الدوال الأصلية لدوال مألوفة
الدالة
دالتها الاصلية RÎk
f(x) =0
F(x)= k
f(x) =1
F(x)= x + k
f(x)=a
F(x)= a x + k
f(x) =x
F(x)= 1/2 x + k
f(x) =x²
F(x)= 1/3 x 3 + k
f(x) =1/x²
F(x)= -1/x + k
f(x) =1/x
F(x)= ln x +k
f(x) =sin x
F(x)= -cos x + k
f (x) =cos x
F(x)= sin x + k
f(x) = e x
F(x)= e x + k
f(x) = 1+tan 2 x
F(x)= tan x + k
f(x) = 1/ Öx
F(x)= 2 Öx + k
f(x) =x n n Z -{-1}
F(x)= 1/(n+1) x n+1 + k
f(x) = u'(x)u n(x) n Z -{-1}
F(x)= 1/(n+1) u n+1 (x) + k
f(x) = u'(x)/ Öu(x)
F(x)= 2 Öu(x) + k
f(x) = u'(x)/u(x)
F(x)= ln |u(x)| +k
f(x) = u'(x)e u(x)
F(x)= e u(x) +k
تمرين 3
عين دالة اصلية للدالة f واوجد مجال تعريف هذه الدالة الاصلية :
a) f(x)=(-2x+4) 5 b) f(x)=(2x+1)/(x²+x+1) 4 c) f(x)=sinx cos 3x
d) f(x)=(ln x) 2 /x e) 3x/Ö(x²+1) f) f(x)= 1/ Ö(x+1) g) f(x)=(x+2)/(x²+4x+3)
h) f(x)=2x e x² i) f(x)=e 3x+1 j) f(x)=xcos(x²+p) k) f(x)= (lnx)/x
l) f(x)=(e x+1)/e x m) f(x)=sin(x)/(2+cosx) n) f(x)=x 3/(1+x²)
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
درس الدوال الأصلية
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» الدوال الأسية (سلسلة إستعد للبكالوريا)

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتديات البهجة لفرحة الجزائريين :: قسم التعليم في الجزائر :: التعليـــم الثانوي :: الثـــالثة ثانوي :: منتدى المواد العلمية و التقنية :: الرياضيـــات-
انتقل الى: